23 research outputs found

    ATD-2 Integrated Arrival/Departure/Surface (IADS) System Phase 1 Evaluations

    Get PDF
    This document provides an overview of the ATD-2 stakeholder and partner evaluations, also known as Shadow Sessions, held at Charlotte-Douglas International Airport (CLT) in preparation for and during the Phase 1 evaluation period from 9/30/2017 - 9/30/2018. All of the user engagement sessions are listed below, but only a few of the major ones are described in more detail in the rest of this document. This document is comprised of information extracted from the ATD-2 Confluence team collaboration archives

    Urban Air Mobility: Grand Challenge

    Get PDF
    The presentation will provide an overview of the Grand Challenge and the its associated build up. It is a high level overview of the objectives, timelines and scenarios

    Assessment of Delivery Accuracy in an Operational-Like Environment

    Get PDF
    In order to enable arrival management concepts and solutions in a Next Generation Air Transportation System (NextGen) environment, ground-based sequencing and scheduling functions were developed to support metering operations in the National Airspace System. These sequencing and scheduling tools are designed to assist air traffic controllers in developing an overall arrival strategy, from enroute down to the terminal area boundary. NASA developed a ground system concept and protoype capability called Terminal Sequencing and Spacing (TSAS) to extend metering operations into the terminal area to the runway. To demonstrate the use of these scheduling and spacing tools in an operational-like environment, the FAA, NASA, and MITRE conducted an Operational Integration Assessment (OIA) of a prototype TSAS system at the FAA's William J. Hughes Technical Center (WJHTC). This paper presents an analysis of the arrival management strategies utilized and delivery accuracy achieved during the OIA. The analysis demonstrates how en route preconditioning, in various forms, and schedule disruptions impact delivery accuracy. As the simulation spanned both enroute and terminal airspace, the use of Ground Interval Management - Spacing (GIM-S) enroute speed advisories was investigated. Delivery accuracy was measured as the difference between the Scheduled Time of Arrival (STA) and the Actual Time of Arrival (ATA). The delivery accuracy was computed across all runs conducted during the OIA, which included deviations from nominal operations which are known to commonly occur in real operations, such as schedule changes and missed approaches. Overall, 83% of all flights were delivered into the terminal airspace within +/- 30 seconds of their STA and 94% of flights were delivered within +/- 60 seconds. The meter fix delivery accuracy standard deviation was found to be between 36 and 55 seconds across all arrival procedures. The data also showed when schedule disruptions were excluded, the percentage of aircraft delivered within +/- 30 seconds was between 85 and 90% across the various arrival procedures at the meter fix. This paper illustrates the ability to meet new delivery accuracy requirements in an operational-like environment using operational systems and NATCA controller participants, while also including common events that might cause disruptions to the schedule and overall system

    Planning Flight Paths of Autonomous Aerobots

    Get PDF
    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions

    Methodology to Define Delivery Accuracy Under Current Day ATC Operations

    Get PDF
    In order to enable arrival management concepts and solutions in a NextGen environment, ground- based sequencing and scheduling functions have been developed to support metering operations in the National Airspace System. These sequencing and scheduling algorithms as well as tools are designed to aid air traffic controllers in developing an overall arrival strategy. The ground systems being developed will support the management of aircraft to their Scheduled Times of Arrival (STAs) at flow-constrained meter points. This paper presents a methodology for determining the undelayed delivery accuracy for current day air traffic control operations. This new method analyzes the undelayed delivery accuracy at meter points in order to understand changes of desired flow rates as well as enabling definition of metrics that will allow near-future ground automation tools to successfully achieve desired separation at the meter points. This enables aircraft to meet their STAs while performing high precision arrivals. The research presents a possible implementation that would allow delivery performance of current tools to be estimated and delivery accuracy requirements for future tools to be defined, which allows analysis of Estimated Time of Arrival (ETA) accuracy for Time-Based Flow Management (TBFM) and the FAA's Traffic Management Advisor (TMA). TMA is a deployed system that generates scheduled time-of-arrival constraints for en- route air traffic controllers in the US. This new method of automated analysis provides a repeatable evaluation of the delay metrics for current day traffic, new releases of TMA, implementation of different tools, and across different airspace environments. This method utilizes a wide set of data from the Operational TMA-TBFM Repository (OTTR) system, which processes raw data collected by the FAA from operational TMA systems at all ARTCCs in the nation. The OTTR system generates daily reports concerning ATC status, intent and actions. Due to its availability, ease of use, and vast collection of data across several airspaces it was determined that the OTTR data set would be the best method to utilize moving forward with this analysis. The particular variables needed for further analysis were determined along with the necessary OTTR reports, by working closely with the repository team additional analysis reports were developed that provided key ETA and STA information at the freeze horizon. One major benefit of the OTTR data is that using the correct reports the data across several airports could be analyzed over large periods of time. The OTTR data processes the TBFM data daily and is stored in various formats across several airspaces. This allowed us to develop our own parsing methods and raw data processing that would not rely on other computationally expensive tools that perform more in depth analysis of similar sets of data. The majority of this work consisted of the development of the ability to filter flights to create a subset of flights that could be considered undelayed, which is defined as a flight at the freeze horizon with an ETA and STA difference that was minimal or close to zero. This was a broad method that allowed the consideration of a large data set which consisted of all the traffic across a two month period in 2013, the hottest and coldest months, arriving into four airports: George Bush Intercontinental, Denver International, Los Angeles International, and Phoenix Sky Harbor

    Air Traffic Management Technology Demonstration (ATD-1) - Concept to Operations

    Get PDF
    In order to enable arrival management concepts and solutions in a NextGen environment, ground-based sequencing and scheduling functions have been developed to support metering operations in the National Airspace System. These sequencing and scheduling algorithms as well as tools are designed to aid air traffic controllers in developing an overall arrival strategy. The research presented provides an outline of the challenge of bringing time based scheduling to the terminal environment and the steps that were taken to bring the technology from concept to testing in an operational environment, and finally acquisition by the FAA. ATM Technology Demonstration-1 (ATD-1), is a set of technologies that provides an efficient solution for managing arrival aircraft beginning from just prior to top-of-descent and continuing down to the runway. The ATD-1 suite of technologies has been tested separately, and each has demonstrated benefits in throughput, delay, and fuel-efficiency. Together, the integration of terminal arrival tools allow arrival aircraft to safely fly closer together on more fuel-efficient routes to increase capacity, and reduce delay, fuel burn, noise, and greenhouse gas emissions

    Airspace Technology Demonstration 2(ATD-2)

    Get PDF
    This ATD-2 presentation was prepared for the AOSP R&D Partnership Workshop held at Ames April 10-12, 2018. It covers a top-level view of the ATD-2 sub-project, the IADS system architecture, the IADS system capabilities, and potential partnership opportunities

    Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations

    Get PDF
    A real time dashboard was developed in order to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users across a number of roles benefit from a real time system that enables common situational awareness. In addition to shared situational awareness the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial set of metrics computed on operational data. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017; Charlotte-Douglas International Airport. Analysis and metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of metrics across delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed

    An Investigation of Flight Deck Data Link in the Terminal Area

    Get PDF
    The Next Generation Air Transportation System (NextGen) and Europe's Single European Sky ATM Research (SESAR) concepts require an increased use of trajectory-based operations, including extensive strategic air traffic control clearances. The clearances are lengthy and complex, which necessitate data link communications to allow for message permanence and integration into the autoflight systems (i.e., autoload capability). This paper examines the use of flight deck data link communications for strategic and tactical clearance usage in the terminal area. A human-in-the-loop simulation was conducted using a high-fidelity flight deck simulator, with ten commercial flight crews as participants. Data were collected from six flight scenarios in the San Francisco terminal airspace. The variables of interest were ATC message modality (voice v. data link), temporal quality of the message (tactical v. strategic) and message length. Dependent variables were message response times, communication clarifications, communication-related errors, and pilot workload. Response time results were longer in data link compared to voice, a finding that has been consistently revealed in a number of other simulations [1]. In addition, strategic clearances and longer messages resulted in a greater number of clarifications and errors, suggesting an increase in uncertainty of message interpretation for the flight crews when compared to tactical clearances. The implications for strategic and compound clearance usage in NextGen and SESAR are discusse
    corecore